A Generalization of Bieberbach's Theorem
نویسندگان
چکیده
In 1912 Bieberbach proved that every compact flat Riemannian manifold M is finitely covered by a flat torus. More precisely, M has the form (F\G)/H where G is a group of translations of Euclidean space, F c G is a discrete subgroup, and H is a finite group of isometries of the space of right cosets F\G. For a proof see e.g. Wolf [18]. The condition that M has a flat Riemannian metric can be separated into two conditions. First, M has an affine structure a distinguished covering by coordinate charts, whose coordinate changes are affine. Second, M has a Riemannian metric whose coefficients in the affine charts are constants. In this paper we relax the second condition. A polynomial Riemannian metric on the affine manifold M is a Riemannian metric whose local expression in affine coordinates has the form ~gi~(x)dxidx ~ where the gij are polynomial functions on Euclidean space E. By letting the gij be rational functions on E, we arrive at the more general notion of a rational Riemannian metric. (It is not assumed that these expressions define Riemannian metrics on all of E.) The object of this paper is to determine which affine manifolds have polynomial Riemannian metrics and to give examples of affine manifold having rational Riemannian metrics.
منابع مشابه
Generalization of Titchmarsh's Theorem for the Dunkl Transform
Using a generalized spherical mean operator, we obtain a generalization of Titchmarsh's theorem for the Dunkl transform for functions satisfying the ('; p)-Dunkl Lipschitz condition in the space Lp(Rd;wl(x)dx), 1 < p 6 2, where wl is a weight function invariant under the action of an associated re ection group.
متن کاملA GENERALIZATION OF A JACOBSON’S COMMUTATIVITY THEOREM
In this paper we study the structure and the commutativity of a ring R, in which for each x,y ? R, there exist two integers depending on x,y such that [x,y]k equals x n or y n.
متن کاملGENERALIZATION OF TITCHMARSH'S THEOREM FOR THE DUNKL TRANSFORM IN THE SPACE $L^P(R)$
In this paper, using a generalized Dunkl translation operator, we obtain a generalization of Titchmarsh's Theorem for the Dunkl transform for functions satisfying the$(psi,p)$-Lipschitz Dunkl condition in the space $mathrm{L}_{p,alpha}=mathrm{L}^{p}(mathbb{R},|x|^{2alpha+1}dx)$, where $alpha>-frac{1}{2}$.
متن کاملA generalization of Martindale's theorem to $(alpha, beta)-$homomorphism
Martindale proved that under some conditions every multiplicative isomorphism between two rings is additive. In this paper, we extend this theorem to a larger class of mappings and conclude that every multiplicative $(alpha, beta)-$derivation is additive.
متن کاملGeneralization of Darbo's fixed point theorem and application
In this paper, an attempt is made to present an extension of Darbo's theorem, and its applicationto study the solvability of a functional integral equation of Volterra type.
متن کامل